Abstract
We investigate the complexity of merging sequences of small integers on the EREW PRAM. Our most surprising result is that two sorted sequences ofn bits each can be merged inO(log logn) time. More generally, we describe an algorithm to merge two sorted sequences ofn integers drawn from the set {0, ...,m−1} inO(log logn+log min{n, m}) time with an optimal time-processor product. No sublogarithmic-time merging algorithm for this model of computation was previously known. On the other hand, we show a lower bound of Ω(log min{n, m}) on the time needed to merge two sorted sequences of lengthn each with elements drawn from the set {0, ...,m−1}, implying that our merging algorithm is as fast as possible form=(logn)Ω(1). If we impose an additional stability condition requiring the elements of each input sequence to appear in the same order in the output sequence, the time complexity of the problem becomes Θ(logn), even form=2. Stable merging is thus harder than nonstable merging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.