Abstract

Weight initialization in the cascade-correlation learning is considered. Most of the previous studies use the so called candidate training to deal with the initialization problem in the cascade-correlation learning. There several candidate hidden units are first trained, and then the one yielding the best value for the covariance criterion is installed to the network. In case there are many candidate units to be trained, the total computational cost of the training can become very large. Here we consider a new approach for weight initialization in the cascade-correlation learning. The proposed method is based on the concept of stepwise regression. Empirical simulations show that the new method can significantly speed-up the cascade-correlation learning compared to the case where the candidate training is used. Moreover, the overall performance remained similar or was even better than with the candidate training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.