Abstract

This work investigates the application of evolutionary search to cascade-correlation learning architectures. Evolutionary programming is used to generate the hidden weights of each candidate hidden unit in the cascade-correlation learning paradigm. The output weights are adapted using deterministic techniques. Evolutionary search is also used to modify the connectivity of each candidate unit so that parsimonious structures may be generated during the neural network construction process. This approach is appealing from a computational perspective since only a population of hidden nodes is being optimized as opposed to a population of neural networks. Results are given for selected low-dimensional examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.