Abstract

In this paper, we present faster than real-time implementation of a class of dense stereo vision algorithms on a low-power massively parallel SIMD architecture, the CSX700. With two cores, each with 96 Processing Elements, this SIMD architecture provides a peak computation power of 96 GFLOPS while consuming only 9 Watts, making it an excellent candidate for embedded computing applications. Exploiting full features of this architecture, we have developed schemes for an efficient parallel implementation with minimum of overhead. For the sum of squared differences (SSD) algorithm and for VGA (640 × 480) images with disparity ranges of 16 and 32, we achieve a performance of 179 and 94 frames per second (fps), respectively. For the HDTV (1,280 × 720) images with disparity ranges of 16 and 32, we achieve a performance of 67 and 35 fps, respectively. We have also implemented more accurate, and hence more computationally expensive variants of the SSD, and for most cases, particularly for VGA images, we have achieved faster than real-time performance. Our results clearly demonstrate that, by developing careful parallelization schemes, the CSX architecture can provide excellent performance and flexibility for various embedded vision applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.