Abstract

Combining sum factorization, weighted quadrature, and row-based assembly enables efficient higher-order computations for tensor product splines. We aim to transfer these concepts to immersed boundary methods, which perform simulations on a regular background mesh cut by a boundary representation that defines the domain of interest. Therefore, we present a novel concept to divide the support of cut basis functions to obtain regular parts suited for sum factorization. These regions require special discontinuous weighted quadrature rules, while Gauss-like quadrature rules integrate the remaining support. Two linear elasticity benchmark problems confirm the derived estimate for the computational costs of the different integration routines and their combination. Although the presence of cut elements reduces the speed-up, its contribution to the overall computation time declines with h-refinement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call