Abstract

The physics element relevant to the fast ignitor in inertial confinement fusion has been extensively studied. Laser-hole boring with enormous photon pressures into overcritical densities was experimentally proved by density measurements with XUV laser probing. Ultra-intense laser interactions at a relativistic parameter regime were studied with a 50-TW glass laser system and a 100-TW glass laser system synchronized with a long pulse laser system. In the study of relativistic laser beam propagation in a 100-μm scale-length plasma, a special propagation mode (super-penetration mode) was observed, where the beam propagated into overdense regions close to the solid target surface. At the super-penetration mode, 20% of the laser energy converted to energetic electrons toward the target inside, while the coupling efficiency was 40% without the long scale-length plasmas. The high-density energetic electron transport and heating of solid material was also studied, indicating beamlike propagation of the energetic electrons in the solid target and effective heating of solid density ions with the electrons. Based on these basic experimental results, the heating of imploded plasma by short-pulse-laser light with three different ways of injecting the heating pulse has been studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.