Abstract

Based on the successful result of fast heating of a shell target with a cone for heating beam injection at Osaka University in 2002 using the PW laser (Kodama et al 2002 Nature 418 933), the FIREX-1 project was started in 2004. Its goal is to demonstrate fuel heating up to 5 keV using an upgraded heating laser beam. For this purpose, the LFEX laser, which can deliver an energy up to10 kJ in a 0.5–20 ps pulse at its full spec, has been constructed in addition to the Gekko-XII laser system at the Institute of Laser Engineering, Osaka University. It has been activated and became operational since 2009. Following the previous experiment with the PW laser, upgraded integrated experiments of fast ignition have been started using the LFEX laser with an energy up to 1 kJ in 2009 and 2 kJ in 2010 in a 1–5 ps 1.053 µm pulse. Experimental results including implosion of the shell target by Gekko-XII, heating of the imploded fuel core by LFEX laser injection, and increase of the neutron yield due to fast heating compared with no heating have been achieved. Results in the 2009 experiment indicated that the heating efficiency was 3–5%, much lower than the 20–30% expected from the previous 2002 data. It was attributed to the very hot electrons generated in a long scale length plasma in the cone preformed with a prepulse in the LFEX beam. The prepulse level was significantly reduced in the 2010 experiment to improve the heating efficiency. Also we have improved the plasma diagnostics significantly which enabled us to observe the plasma even in the hard x-ray harsh environment. In the 2010 experiment, we have observed neutron enhancement up to 3.5 × 107 with total heating energy of 300 J on the target, which is higher than the yield obtained in the 2009 experiment and the previous data in 2002. We found the estimated heating efficiency to be at a level of 10–20%. 5 keV heating is expected at the full output of the LFEX laser by controlling the heating efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.