Abstract

AbstractQuantum information processing requires information or entanglement that can be transferred or distributed from one location to another with high fidelity. Here, a scheme for faithful quantum state transfer and entanglement generation based on the hybrid opto‐electro‐mechanical (OEM) systems in a fast and deterministic way is proposed. By applying invariant‐based inverse engineering to the interaction Hamiltonian, the couplings in the OEM system can be controlled by asynchronized driving fields, which is convenient to be realized in practice. Taking the systematic decoherence into consideration, the numerical simulation shows that the scheme can be implemented with less time and high fidelity. Therefore, the scheme provides a promising way for robust on‐chip converting of low‐frequency electrical signal into much higher‐frequency optical signal, and thus enabling large‐scale quantum information networks to grow in size and complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.