Abstract

We demonstrate efficient schemes of deterministic entanglement generation and quantum state transfer (QST) with the nitrogen-vacancy (NV) centers in diamond confined in separated microtoroidal resonators via single-photon input-output process. Assisted by the polarization of input photon pulse and the electron spin state of NV center, high fidelity NV center entangled states and photonic entangled states can be generated, respectively. The analyses of experimental feasibility show that our schemes work well with low quality resonators and weak coupling between qubits, which may be beneficial for exploring large-scale quantum information processing with diamond-based solid-state devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call