Abstract

Self-healability is a crucial feature for developing artificial superhydrophobic surfaces. Although self-healing of microscopic defects has been reported, the restoration of severely damaged superhydrophobic surfaces remains a technological challenge. Here, we report a robust superhydrophobic surface possessing ultrafast recoverability after catastrophic damage. The surface is fabricated via integrating its hierarchical texture comprised of Super P (a conductive carbon black) and TiO2 nanoparticles into a poly(dimethylsiloxane) network cross-linked by dynamic pyrogallol-Fe coordination. In the presence of an electrical trigger, the surface restores its macroscopic configuration, hierarchical texture, mechanical properties, and wettability within 1 min after being cut or plasma etching. The restoration is attributed to the reconstruction of the multiscale structures through dynamic coordination. Application of the self-healable surface is demonstrated by a fast de-icing process. The present investigation offers a novel insight into the durability and reliability of artificial superhydrophobic surfaces against catastrophic damage, which has potential application in the fields including self-cleaning, anti-icing, advanced electronics, and so on.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call