Abstract

A fast Global Navigation Satellite System (GNSS) satellite signal acquisition method based on resampling is presented. In contrast to traditional approaches, which perform a single-round search with a high data rate, the proposed method introduces a signal acquisition mechanism that uses data resampling. Starting from a resampled data rate slightly above the Nyquist frequency, the proposed method conducts multiple rounds of searches with an increasing sampling rate. After each round of searching, the satellites are sorted according to their relative signal strengths. By removing satellites at the bottom of each sorted list, the search space for satellite acquisition is continuously pruned. If a sufficient number of satellites are not acquired when the original data rate is reached, the method will switch to the weak-signal detection mode and use non-coherent integration for the satellites at the top on the list. The non-coherent integration process continues until either a sufficient number of satellites are acquired or the maximum number of steps is reached. The experimental results show that the proposed method can acquire the same set of satellites as traditional methods but with a considerably lower computational cost. The proposed method was implemented in a software-based GNSS receiver and can also be used in hardware-based receivers.

Highlights

  • 1 Introduction Global Navigation Satellite System (GNSS) positioning has been widely applied in various fields with the development of navigation technology

  • We propose a modified PCPSA method based on multiple resampling (MR-PCPSA) to acquire all satellite signals and reduce the computational cost of satellite signal acquisition in a mixed-signal-strength situation

  • 6 Conclusions A modified PCPSA method based on input data resampling is proposed

Read more

Summary

Introduction

Global Navigation Satellite System (GNSS) positioning has been widely applied in various fields with the development of navigation technology. The basic blocks of a typical GNSS receiver include an antenna, RF front end, and digital baseband processor. The role of the antenna and front-end circuits is to detect satellite signals, amplify, and demodulate them to zero or a low intermediate frequency (IF), whereas the tasks of the digital baseband processor include satellite signal acquisition, tracking, and navigation data processing, as shown in Fig. 1 [1, 2]. The first step in baseband processing is satellite signal acquisition. If a satellite is visible, the acquisition algorithm provides an initial estimate of the phase shift of the corresponding pseudo-random number (PRN) code and Doppler frequency shift of the carrier [3]. According to the principle of satellite positioning, a GNSS receiver requires at least four visible navigation

Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.