Abstract

Simulating quantum dynamics is expected to be performed more easily on a quantum computer than on a classical computer. However, the currently available quantum devices lack the capability to implement fault-tolerant quantum algorithms for quantum simulation. Hybrid classical quantum algorithms such as the variational quantum algorithms have been proposed to effectively use current term quantum devices. One promising approach to quantum simulation in the noisy intermediate-scale quantum (NISQ) era is the diagonalisation based approach, with some of the promising examples being the subspace variational quantum simulator (SVQS), variational fast forwarding (VFF), fixed-state variational fast forwarding (fs-VFF), and the variational Hamiltonian diagonalisation (VHD) algorithms. However, these algorithms require a feedback loop between the classical and quantum computers, which can be a crucial bottleneck in practical application. Here, we present the classical quantum fast forwarding (CQFF) as an alternative diagonalisation based algorithm for quantum simulation. CQFF shares some similarities with SVQS, VFF, fs-VFF and VHD but removes the need for a classical-quantum feedback loop and controlled multi-qubit unitaries. The CQFF algorithm does not suffer from the barren plateau problem and the accuracy can be systematically increased. Furthermore, if the Hamiltonian to be simulated is expressed as a linear combination of tensored-Pauli matrices, the CQFF algorithm reduces to the task of sampling some many-body quantum state in a set of Pauli-rotated bases, which is easy to do in the NISQ era. We run the CQFF algorithm on existing quantum processors and demonstrate the promise of the CQFF algorithm for current-term quantum hardware. We compare CQFF with Trotterization for a XY spin chain model Hamiltonian and find that the CQFF algorithm can simulate the dynamics more than 105 times longer than Trotterization on current-term quantum hardware. This provides a 104 times improvement over the previous record.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.