Abstract
This study shows the presence of five isozymic forms of alkaline xylanase from Bacillus pumilus using fast flow rate microfiltration, ultrafiltration, Q-sepharose, and phenyl sepharose chromatographic techniques. Polyacrylamide gel electrophoresis, high-performance liquid chromatography, and zymographic studies also revealed the purity of five isoforms of alkaline xylanases. Isoforms-X-I, X-III, and X-V exhibited optimum activity at pH 8.5, whereas X-II, X-IV showed maximum activity at pH 9. All isoforms were optimally active at temperature 55°C. Isoforms were found to be stable at pH 7-11, showed 92-100% residual activity after 3 hr, treatment time for most industrial applications. The isoforms retained nearly 80-86% residual activity after incubating at 45°C for 3 hr. Molecular weights of xylanase I-V, were 13.1, 15.3, 18.4, 20.1, and 21.0 kDa, respectively. Mg2+ ions were found to be potent activator for all isozymic forms. The Km and Vmax values of X-I, X-II, X-III, X-IV, and X-V were 6.71, 6.66, 7.14, 5.88, 6.25 mg/ml and 2,000, 1,695, 1,666.66, 1,428.57, and 1,408.45 IU/mg protein, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed the monomeric nature of all isoforms. The low-molecular masses, significantly enhanced activity in the presence of industrially suitable-low cost activator, better stability of all isoforms at pH 7-11 and at higher temperature, also presence of multiple forms of alkaline xylanase, makes this enzyme suitable for textile-paper industries. This is also the first report mentioning the purification of five isozymic forms of alkaline xylanase using fast flow rate techniques.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have