Abstract

We present time resolved photoluminescence measurements on thin films of a phenyl-substituted poly(phenylene-vinylene) incorporated in a diode structure. Under reverse bias conditions rapid exciton dissociation is observed leading to luminescence quenching by up to 30%. In contrast, under forward bias conditions the initial quenching is substantially reduced due to shielding by space charges. At longer times thermally activated exciton quenching by injected polarons dominates the quenching process. At 3 ns after excitation, the external field is found to enhance the delayed luminescence. We attribute this to increased recombination of spatially correlated charge carrier pairs in the presence of the electric field, which are generated by exciton dissociation by bimolecular annihilation or on defect states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.