Abstract
AbstractThe stochastic volatility jump diffusion model with jumps in both return and volatility leads to a two-dimensional partial integro-differential equation (PIDE). We exploit a fast exponential time integration scheme to solve this PIDE. After spatial discretization and temporal integration, the solution of the PIDE can be formulated as the action of an exponential of a block Toeplitz matrix on a vector. The shift-invert Arnoldi method is employed to approximate this product. To reduce the computational cost, matrix splitting is combined with the multigrid method to deal with the shift-invert matrix-vector product in each inner iteration. Numerical results show that our proposed scheme is more robust and efficient than the existing high accurate implicit-explicit Euler-based extrapolation scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.