Abstract
Dynamic correlation plays an important role in the accurate calculation of chemical compounds such as the description of equilibrium structures in chemical systems. A model for the fast estimation of dynamic correlation energy is introduced in this work. This model is based on the idea of decomposition of the contribution of dynamic correlation energy calculated by nth order Møller-Plesset perturbation (MPn) theory with respect to atomic regions. Multiple levels of theory, including MP2, MP2.5, and MP4, are used as the reference, and the corresponding correlation energy densities are calculated. The proposed model is concise, fast, and promising for practical use, such as the prediction of reaction energies. It can also work as a baseline model or pretrained model for follow-up studies of machine learning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.