Abstract

The machine-learned electron correlation (ML-EC) model is a regression model in the form of a density functional that reproduces the correlation energy density based on wavefunction theory. In a previous study [T. Nudejima et al., J. Chem. Phys. 151, 024104 (2019)], the ML-EC model was constructed using the correlation energy density from all-electron calculations with basis sets including core polarization functions. In this study, we applied the frozen core approximation (FCA) to the correlation energy density to reduce the computational cost of the response variable used in machine learning. The coupled cluster singles, doubles, and perturbative triples [CCSD(T)] correlation energy density obtained from a grid-based energy density analysis was analyzed within FCA and correlation-consistent basis sets without core polarization functions. The complete basis set (CBS) limit of the correlation energy density was obtained using the extrapolation and composite schemes. The CCSD(T)/CBS correlation energy densities based on these schemes showed reasonable behavior, indicating its appropriateness as a response variable. As expected, the computational time was significantly reduced, especially for systems containing elements with a large number of inner-shell electrons. Based on the density-to-density relationship, a large number of data (5 662 500 points), which were accumulated from 30 molecules, were sufficient to construct the ML-EC model. The valence-electron correlation energies and reaction energies calculated using the constructed model were in good agreement with the reference values, the latter of which were superior in accuracy to density functional calculations using 71 exchange-correlation functionals. The numerical results indicate that the FCA is useful for constructing a versatile model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.