Abstract
Multiview Video Coding (MVC) is a technique that permits efficient compression of multiview video. MVC uses variable block size motion and disparity estimation for block matching. This requires an exhaustive search process that involves all possible macroblock partition sizes. We analyze the time complexity of MVC and the methods that have been proposed to speed up motion and disparity estimation. We then propose two new methods: Previous Disparity Vector Disparity Estimation (PDV-DE) and Stereo-Motion Consistency Constraint Motion and Disparity Estimation (SMCC-MDE). PDV-DE exploits the correlation between temporal levels and disparity vectors to speed up the disparity estimation process while SMCC-MDE exploits the geometrical relationship of consecutive frame pairs to speed up motion and disparity estimation. We build a complete low complexity MVC encoding solution that combines our two methods with complementary previous methods to speed up motion and disparity search. We evaluate the complexity of our solution in terms of encoding time and number of search points. Our experimental results show that our solution can reduce the encoding time and number of search points of the standard MVC implementation (JMVM 6.0) using the fast TZ search mode up to 93.7% and 96.9%, respectively, with negligible degradation in the rate-distortion performance. Compared to the best published results, this is an improvement of up to 11% and 7%, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have