Abstract

Safety and efficacy, two significant parameters in drug administration, can be improved by site-specific delivery approaches. Here a fast, efficient, and targeted liposome delivery system steered by a DNA hybridization recognition mechanism is presented. For this purpose, lipid-terminated DNA is inserted in both liposome and cell membranes by simple mixing of the components. Cellular accumulation of cargo encapsulated in the liposomal core is substantially enhanced when the DNA sequence on the cell is complementary to that on the liposome. Additionally, in mixed cell populations, liposomes discriminate targets by their complementary DNA sequences. Exposure of cells to low temperature and endocytosis inhibitors suggests a caveolae-dependent endocytosis uptake pathway. Mechanistically, hybridization between DNA strands spatially traps liposomes and cell membranes in close proximity, consequently increases the local liposome concentration, and thereby enhances cellular uptake of liposomes and their payload. This programmable delivery system might contribute to new applications in molecular biology and drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call