Abstract

Hagedorn states are the key to understand how all hadrons observed in high energy heavy ion collisions seem to reach thermal equilibrium so quickly. An assembly of Hagedorn states is formed in elementary hadronic or heavy ion collisions at hadronization. Microscopic simulations within the transport model UrQMD allow to study the time evolution of such a pure non-equilibrated Hagedorn state gas towards a thermally equilibrated Hadron Resonance Gas by using dynamics, which unlike strings, fully respect detailed balance. Propagation, repopulation, rescatterings and decays of Hagedorn states provide the yields of all hadrons up to a mass of m=2.5 GeV. Ratios of feed down corrected hadron multiplicities are compared to corresponding experimental data from the ALICE collaboration at LHC. The quick thermalization within t=1-2 fm\c of the emerging Hadron Resonance Gas exposes Hagedorn states as a tool to understand hadronization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.