Abstract

Mask three-dimensional (3D) effect is a vital influence factor of imaging performance in the advanced extreme ultraviolet (EUV) lithography system. However, the rigorous 3D mask diffraction model is very time-consuming and brings a great computational burden. This paper develops a fast and accurate method to calculate the mask diffraction near-field (DNF) based on an improved pixel-to-pixel generative adversarial network, where the deformable convolution is introduced for fitting the crosstalk effect between mask feature edges. The long short-term memory model is added to the generator network to fuse and exchange information between the real parts and imaginary parts of DNF matrices. In addition, the simulation accuracy of DNF is enhanced by using the subpixel super-resolution method in the up-sampling step. The calculation accuracy is improved by more than 50% compared to the traditional network, and the calculational efficiency is improved by 128-folds compared to the rigorous electromagnetic field simulation method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.