Abstract

Data-dependence profiling is a program-analysis technique for detecting parallelism opportunities in sequential programs. It captures data dependences that actually occur during program execution, filtering parallelism-preventing dependences that purely static methods assume only because they lack critical runtime information, such as the values of pointers and array indices. Profiling, however, suffers from high runtime overhead. In our earlier work, we accelerated data-dependence profiling by excluding polyhedral loops that can be handled statically using certain compilers and eliminating scalar variables that create statically-identifiable data dependences. In this paper, we combine the two methods and integrate them into DiscoPoP, a data-dependence profiler and parallelism discovery tool. Additionally, we detect reduction patterns statically and unify the three static analyses with the DiscoPoP framework to significantly diminish the profiling overhead and for a wider range of programs. We have evaluated our unified approaches with 49 benchmarks from three benchmark suites and two computer simulation applications. The evaluation results show that our approach reports fewer false positive and negative data dependences than the original data-dependence profiler and reduces the profiling time by at least 43%, with a median reduction of 76% across all programs. Also, we identify 40% of reduction cases statically and eliminate the associated profiling overhead for these cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.