Abstract

With the development of multimedia equipment and the increasing demand for high-quality video applications, the traditional video coding standard, H.265/High Efficiency Video Coding (HEVC), can no longer effectively satisfy the requirements. To promote the development of high-quality video, a new generation video coding standard, H.266/Versatile Video Coding (H.266/VVC), is established, and it is the inheritance and development of H.265/HEVC. It not only retains many mature technologies and methods in HEVC but also adds some new coding tools, such as wide-angle prediction and Multitype Tree (MTT) partition structure. The MTT partition structure brings a more flexible partition method of Coding Unit (CU), but the accompanying increase in computational complexity is unacceptable. In order to ensure an effective balance between coding efficiency and coding quality, a fast CU partition algorithm based on texture is proposed in this paper. First, the texture complexity of the neighboring CU is used as a threshold for evaluating the complexity of the current CU, so as to skip the unpromising depth. Then, the gradient features are extracted to determine whether the Quad-Tree (QT) partition is executed. Finally, the improved Canny operator is used to extract edge features, and the partition mode in the horizontal or vertical direction is excluded. The algorithm was embedded in VTM7.0, and the video sequences with different resolutions were tested under general experimental configuration. Simulation experiment results show that the average time saving of this method reached 50.56% compared with the anchor algorithm. At the same time, the average BDBR is increased by 1.31%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.