Abstract

Recently the general synthetic iteration scheme (GSIS) was proposed for the Boltzmann equation [W. Su et al., J. Comput. Phys., 407 (2020), 109245], where various numerical simulations have shown that (i) the steady-state solution can be found within dozens of iterations at any Knudsen number $K$, and (ii) the solution is accurate even when the spatial cell size in the bulk region is much larger than the molecular mean free path, i.e., the Navier--Stokes solutions are recovered at coarse grids. The first property indicates that the error decay rate between two consecutive iterations decreases to zero along with $K$, while the second one implies that the GSIS asymptotically preserves the Navier--Stokes limit when $K$ approaches zero. This paper is first dedicated to the rigorous proof of both properties. Second, several numerically challenging cases (especially the two-dimensional thermal edge flow) are used to further demonstrate the accuracy and efficiency of GSIS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.