Abstract

Practical applications of carbon anodes in high-power potassium-ion batteries (PIBs) were hampered by their limited rate properties, due to the sluggish K+ transport kinetics in the bulk. Constructing convenient ion/electron transfer channels in the electrode is of great importance to realize fast charge/discharge rates. Here, cross-linked porous carbon nanofibers (inner porous carbon nanotubes and outer soft carbon layer) modified with oxygen-containing functional groups were well designed as anodes to realize robust de-/potassiation kinetics. The novel anode delivered excellent rate capabilities (107 mAh g-1 at 20 A g-1 and 78 mAh g-1 at 40 A g-1) and superior cycling stability (76% capacity retention after 14,000 cycles at 2 A g-1). In situ XRD measurement, in situ Raman spectra, and galvanostatic intermittent titration verified its surface-dominated potassium storage behavior with fast de-/potassiation kinetics, excellent reversibility, and rapid ion/electron transport. Moreover, theoretical investigation revealed that the carboxyl groups in the carbon offered additional capacitive adsorption sites for K+, thus significantly enhancing the reversible capacity. Surprisingly, a full cell using the anode and perylene-3,4,9,10-tetracarboxylic dianhydride cathode achieved an outstanding power density of 23,750 W kg-1 and superior fast charge/slow discharge performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call