Abstract

Antimony-based materials are considered as promising anodes for potassium ion batteries due to their high theoretical capacity and low electrode potential. However, the aggregation and bulk expansion of Sb particles in cycling will cause capacity attenuation and poor rate performance. In this paper, Sb nanoplates were designed to be embedded in flexible porous N-dopped carbon nanofibers (Sb@PCNFs) by a simple electrospinning deposition (ESD) method. In this structural design, Sb nanoplates of high capacity were employed as active materials, N-dopped carbon nanofibers were used to improve conductivity and structural stability. The introduction of pore-forming agent enables the nanofibers to possess porous structure, thus buffering the huge volume change and promoting the transfer of electrolyte/ions. More importantly, the freestanding film can be directly used as a working electrode, reducing the redundancy in the battery and the cost. Benefitting from the favorable structure, the freestanding flexible Sb@PCNFs electrode shows excellent potassium storage performance with a capacity of 314 mAh/g after 2000 cycles at 500 mA/g. This strategy of employing active material with high capacity in porous and conductive flexible nanofibers represents an effective method of achieving binder-free electrode with good electrochemical performance towards wearable energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call