Abstract

Lithium-Ion Batteries (LIBs), which have already proven to be a reliable power source in consumer electronics devices, are being considered a viable option for powering Electric Vehicles (EVs). Fast charging of EVs is one of the key challenges that is preventing a wide range of adoption of EVs. In this study, a lithium-ion cell with Lithium Titanium Oxide (LTO)-lithium Nickel Manganese Cobalt oxide (NMC) chemistry of 30 Ah has been used to study the fast charging capabilities at different temperatures and C-rates. Various parameters such as temperature rise, nominal and exponential capacity, and internal resistance have been studied for different C-rates (C/3, 1C, and 2C) and at different temperatures (25 °C, 40 °C, and -10 °C). The ΔV values along with the charge and discharge characteristics have been analyzed, and the experimental results are compared with the simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call