Abstract
In an asymmetric rendezvous system, such as an unfair synchronous queue and an elimination array, threads of two types, consumers and producers, show up and are matched, each with a unique thread of the other type. Here we present a new highly scalable, high throughput asymmetric rendezvous system that outperforms prior synchronous queue and elimination array implementations under both symmetric and asymmetric workloads (more operations of one type than the other). Consequently, we also present a highly scalable elimination-based stack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.