Abstract

We present a sixth-order explicit compact finite difference scheme to solve the three-dimensional (3D) convection–diffusion equation. We first use a multiscale multigrid method to solve the linear systems arising from a 19-point fourth-order discretization scheme to compute the fourth-order solutions on both a coarse grid and a fine grid. Then an operator-based interpolation scheme combined with an extrapolation technique is used to approximate the sixth-order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid-independent convergence rate for solving convection–diffusion equations with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth-order compact (SOC) scheme, compared with the previously published fourth-order compact (FOC) scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.