Abstract

AbstractWe report for the first time that Pd nanocrystals can absorb H via a “single‐phase pathway” when particles with a proper combination of shape and size are used. Specifically, when Pd icosahedral nanocrystals of 7‐ and 12‐nm in size are exposed to H atoms, the H‐saturated twin boundaries can divide each particle into 20 smaller single‐crystal units in which the formation of phase boundaries is no longer favored. As such, absorption of H atoms is dominated by the single‐phase pathway and one can readily obtain PdHx with anyx in the range of 0–0.7. When switched to Pd octahedral nanocrystals, the single‐phase pathway is only observed for particles of 7 nm in size. We also establish that the H‐absorption kinetics will be accelerated if there is a tensile strain in the nanocrystals due to the increase in lattice spacing. Besides the unique H‐absorption behaviors, the PdHx (x=0–0.7) icosahedral nanocrystals show remarkable thermal and catalytic stability toward the formic acid oxidation due tothe decrease in chemical potential for H atoms in a Pd lattice under tensile strain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call