Abstract
We report for the first time that Pd nanocrystals can absorb H via a "single-phase pathway" when particles with a proper combination of shape and size are used. Specifically, when Pd icosahedral nanocrystals of 7- and 12-nm in size are exposed to H atoms, the H-saturated twin boundaries can divide each particle into 20 smaller single-crystal units in which the formation of phase boundaries is no longer favored. As such, absorption of H atoms is dominated by the single-phase pathway and one can readily obtain PdHx with anyx in the range of 0-0.7. When switched to Pd octahedral nanocrystals, the single-phase pathway is only observed for particles of 7 nm in size. We also establish that the H-absorption kinetics will be accelerated if there is a tensile strain in the nanocrystals due to the increase in lattice spacing. Besides the unique H-absorption behaviors, the PdHx (x=0-0.7) icosahedral nanocrystals show remarkable thermal and catalytic stability toward the formic acid oxidation due tothe decrease in chemical potential for H atoms in a Pd lattice under tensile strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.