Abstract

Sintering of silver is a popular method for forming interconnections in power electronics. Owing to their large size and spherical shape, micron- and submicron-sized Ag particles synthesized by a polyol method (denoted as polyol Ag particles) are not expected to undergo low-temperature, pressureless sintering. However, previous studies have shown sound bonding with shear strength of more than 40 MPa at 200 °C with micron and submicron polyol Ag particles. In this work, to understand the bonding mechanism of polyol Ag particles, the sintering behaviors of two Ag pastes, one with polyol Ag particles and another based on hybrid Ag particles consisting of micron-sized Ag flakes and submicron-sized Ag particles, were investigated without any applied pressure at 175 °C via transmission electron microscopy. During the sintering process, Ag nanoparticles formed in situ can significantly accelerate the sintering of the Ag paste, resulting in low electrical resistivity of the sintered Ag paste (9.8 × 10−6 Ω·cm) after only 5 min of sintering at 175 °C. The Ag nanoparticles were likely generated from the reduction of residual Ag ions or the Ag complex in the paste. The results were also verified by washing the Ag particles or adding Ag ions into the paste.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.