Abstract

The ring-opening polymerization of l-lactide with calcium alkoxides generated in-situ from bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide] and 2-propanol are presented. The polymerization in THF at room temperature proceeds rapidly and in a living manner, giving poly(l-lactide)s of controlled molecular weight, low polydispersity, and tailored end-functionalities. Kinetic studies show the absence of an induction period and a pseudo-first order rate constant of 6.41 L mol−1 min−1, which is significantly higher than for related Y5(μ-O)(O i Pr)13− or aluminum alkoxide-initiated polymerizations. The initiation involves a two-step process: (1) alcoholysis of bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide] to give the corresponding calcium alkoxide and (2) ring-opening of l-lactide via acyl-oxygen cleavage and insertion into the calcium-alkoxide bond. In the presence of excess alcohol, fast and reversible exchange between free alcohol molecules and coordinated alkoxide ligands takes place. This allows tuning of the poly(l-lactide) molecular weight over a wide range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.