Abstract

A commercial calcium dimethoxide and an in-situ generated calcium methoxide prepared from bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide] and methanol, were investigated as initiators for the ring-opening polymerization of e-caprolactone and L-lactide. Commercial calcium dimethoxide initiated rapid e-caprolactone polymerization at 120°C in bulk to give quantitatively a polymer with a polydispersity index around 1.3. Significant racemization was observed for L-lactide polymerization. The In-situ formed calcium methoxide promoted the solution polymerization of both e-caprolactone and L-lactide to high conversion at room temperature over a short time period, yielding the corresponding polyesters with narrow molecular weight distribution. NMR spectra showed that the poly(L-lactide) isolated had a purely isotactic microstructure. The initiator efficiency could be tuned by varying the molar ratio of methanol and bis(tetrahydrofuran)calcium bis[bis(trimethylsilyl)amide].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call