Abstract

Surface enhanced Raman-based sensors are widely used for chemical and biological species analysis; but to date the high cost, long production time, hazardous, and toxic content as well as small sensing area and opacity are limiting their capabilities for widespread applications in the medical and environmental fields. We present a novel cost-effective method for fast laser-based fabrication of affordable large-area and transparent periodic arrays of ligand-free metallic nanoparticles, offering a maximum possibility for the adsorption/immobilization of molecules and labeling. Further, we demonstrate a remarkable detection limit in the picomolar range by means of Raman scattering, thus evidencing a superior signal-to-noise ratio compared to other sensor substrates. The high sensitivity performance along with a fast and cheap fabrication procedure of reusable large-area transparent plasmonic devices opens the route for direct, in situ multimodal optical analysis with broad applications in the biomedical/analytical fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call