Abstract

Measuring similarity among data objects is important in data analysis and mining. SimRank is a popular link-based similarity measurement among nodes in a graph. To compute the all-pairs SimRank matrix accurately, iterative methods are usually used. For static graphs, current iterative solutions are not efficient enough, both in time and space, due to the unnecessary cost and storage by the nature of iterative updating. For dynamic graphs, all current incremental solutions for updating the SimRank matrix are based on an approximated SimRank definition, and thus have no accuracy guarantee. In this paper, we propose a novel local push based algorithm for computing and tracking all-pairs SimRank. Furthermore, we develop an iterative parallel two-step framework for local push to take advantage of modern hardwares with multicore CPUs. We show that our algorithms outperform the state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.