Abstract

Fast and accurate peak wavelength extraction of chromatic confocal signals is of vital importance for efficient chromatic confocal measurement. Existing peak extraction algorithms do not effectively balance calculation efficiency and extraction accuracy. For example, centroid algorithms have high computational efficiency but low accuracy; model-based fitting algorithms have high extraction accuracy but low calculation efficiency. In this paper, a fast and accurate mean-shift vector based peak wavelength extraction algorithm is proposed. In this algorithm, the initial peak wavelength is preset with a centroid algorithm; then the corresponding mean-shift vector is calculated, after which, a new peak wavelength can be calculated by shifting the peak wavelength along the mean-shift vector. This process is then iteratively carried out until a preset ending condition is met. Our experimental results show that the mean-shift vector based peak extraction algorithm has an accuracy equal to that achieved with Gaussian fitting while the efficiency improves by over 70 times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.