Abstract

This paper proposes a new synchrophasor estimation algorithm capable of speeding up the rate of measurements. It reduces the computational complexity and meets the accuracy requirements of the P-class phasor measurement unit (PMU) defined by the IEEE Std C37.118.1™-2011 and its amendment IEEE Std C37.118.1a™-2014. The proposed estimator is constructed by inserting the second order Taylor polynomial of signal model in the modulated sliding discrete Fourier transform (MSDFT) expression, taking advantage of the dynamic model of the Taylor series expansion and the low computational complexity of the MSDFT. The proposed technique is found to be as accurate as the traditional one (based on joint application of Taylor's second order polynomial and the DFT) with higher reporting rates and it satisfies all the tests listed by the standard as well as the influence of wideband noise and decaying DC component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.