Abstract
Dynamic power optimization is an important part of the power optimization for embedded parallel processing. Dynamic power estimation is the premise for dynamic power optimization. The evaluation model with fast calculating speed and high accuracy can improve the efficiency for dynamic power optimization. The dynamic power evaluation methods based on low level simulation have high accuracy. But it is very time consuming. The high level dynamic power estimation models have higher speed, but have lower calculation accuracy. For this issue, the paper proposes a dynamic power estimation method based on component which combines ow level dynamic power evaluation methods with high level dynamic power estimation methods. The dynamic power of gray level co-occurrence matrix(GLCM) and fractal dimension(FD) in the remote sensing cloud detection based on texture feature is evaluated using the proposed method. The average error of the dynamic power for GLCM and FD is 11.86% using the proposed method. The computing time for GLCM and FD using the proposed method is 0.295 times than the method based XPower.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have