Abstract

We investigate integral formulations and fast algorithms for the steady-state radiative transfer equation with isotropic and anisotropic scattering. When the scattering term is a smooth convolution on the unit sphere, a model reduction step in the angular domain using the Fourier transformation in 2D and the spherical harmonic transformation in 3D significantly reduces the number of degrees of freedoms. The resulting Fourier coefficients or spherical harmonic coefficients satisfy a Fredholm integral equation of the second kind. We study the uniqueness of the equation and proved an a priori estimate. For a homogeneous medium, the integral equation can be solved efficiently using the FFT and iterative methods. For an inhomogeneous medium, the recursive skeletonization factorization method is applied instead. Numerical simulations demonstrate the efficiency of the proposed algorithms in both homogeneous and inhomogeneous cases and for both transport and diffusion regimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call