Abstract

Outer hair cells are centrally involved in the amplification and frequency tuning of the mammalian cochlea, but evidence about their transducing properties in animals with fully developed hearing is lacking. Here we describe measurements of mechanoelectrical transducer currents in outer hair cells of rats between postnatal days 5 and 18, before and after the onset of hearing. Deflection of hair bundles using a new rapid piezoelectric stimulator evoked transducer currents with ultra-fast activation and adaptation kinetics. Fast adaptation resembled the same process in turtle hair cells, where it is regulated by changes in stereociliary calcium. It is argued that sub-millisecond transducer adaptation can operate in outer hair cells under the ionic, driving force and temperature conditions that prevail in the intact mammalian cochlea.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.