Abstract

Management of grassland is one of the important factors in traditional livestock farming systems. A survey was conducted in Madi of Chitwan Nepal to understand the perceptions of the farmers/graziers about grassland and feed management. For that, a well-prepared pretested set of questionnaires was used to collect information related to feeds and grassland ecological knowledge of the farmers. The questionnaire consisted of a set of questions about the household, factors affecting grassland productivity and alternative feeding resources. The survey revealed variations in household livestock ownerships, mostly for cattle (1–3) and buffalo (1–5), whilst goat ownership was similar across the survey sites. Grazing duration in months was similar in the study sites (about 7 months per year). Likewise, there was no conflict for grazing livestock, whereas it is believed that goat and buffalo have the same level of detrimental effect on grassland. A significantly higher number of respondents reported that flooding had a negative impact (p = 0.032) on grassland productivity. The Imperata cylindrica (L.) P. Beauv. locally known as Siru was a dominant forage species followed by the mosaics of Saccharum spontaneum L. locally known as Kaans in Nepali and Jhaksi in Tharu language, Saccharum bengalense Retz. locally known as Baruwa in Nepali and Narkat in the Tharu language. The respondents also pointed out that at least 2 to 3 years were needed for the recovery of grasslands when hampered by flooding and riverbank cut-off. Similar species dominated in the recovered grasslands over time of flooding. The seasonal fodder plantation was a major area of grassland improvement issue across the survey sites. There were high dependencies of the graziers on natural herbages and crop residues for feeding livestock in summer and winter, though the herbage species and preferences remained different. This study provides the primary background of the biophysical factors of grassland management for sustainable uses that require institutional support. The study further provides an insight into the need for implementation of the demand-based grassland technology interventions, possibly at a higher rate of adoption than the current local scale. However, the social-ecological consequences of grassland systems, i.e. the impact of climate change, herd dynamics and nutrient flow in vegetation and soil, have to be monitored in a long run.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call