Abstract

Depolarized Raman spectra of compressed hydrogen gas have been computed rigorously previously for 36 K and 50 K (Gustafsson et al. (2009)). The far wings of the rotational lines show asymmetry that goes beyond that expected from the theory for intracollisional interference and Fano line shapes. Here we analyze the (0) line for pure hydrogen at 36 K in detail. The added asymmetry stems partly from a shape resonance which adds significant intensity to the higher frequency side of the line profile. The influence of the threshold energy for the rotational transition accounts for the remainder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.