Abstract

The light competition in dense plant stands may be disadvantageous in transplant production because competition stimulates stem elongation and can reduce photosynthate allocation to leaves; this, in turn, may reduce the early growth rate after transplanting. In this study, we focused on how the proportion of far-red (FR) light affected light competition among cucumber (Cucumis sativus L.) seedlings and investigated the effects of the plant density × FR interaction on photosynthate allocation and subsequent early growth after transplanting. Seedlings at the cotyledon stage were planted into plug trays at densities ranging from 109 to 1736 plants/m2; then they were grown for 4 days under light-emitting diode (LED) light containing FR light (FR+) at approximately the same red-to-FR ratio as in sunlight (1.2) or under light containing no FR (FR−). The higher density significantly stimulated stem elongation under both FR+ and FR−, but the effect was small under FR−; this indicates that light competition in the dense stands was inhibited by reducing FR light. The higher plant density significantly increased photosynthate allocation to the stem and decreased allocation to the leaves under both FR+ and FR−; however, again, the effect was smaller under FR−. After transplanting the seedlings to pots, early growth decreased in the seedlings that allocated less photosynthate to their leaves. Our results indicate that light with reduced FR can mitigate the disadvantageous photosynthate allocation of transplants and the reduction of early growth after transplanting that are likely to occur as a result of light competition at high plant density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call