Abstract
The symmetric projective varieties of rank one are all smooth and Fano by a classical result of Akhiezer. We classify the locally factorial (respectively smooth) projective symmetric G -varieties of rank 2 that are Fano. When G is semisimple we also classify the locally factorial (respectively smooth) projective symmetric G -varieties of rank 2 that are only quasi-Fano. Moreover, we classify the Fano symmetric G -varieties of rank 3 obtainable from a wonderful variety by a sequence of blow-ups along G -stable varieties. Finally, we classify the Fano symmetric varieties of arbitrary rank that are obtainable from a wonderful variety by a sequence of blow-ups along closed orbits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Publications of the Research Institute for Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.