Abstract
We provide a modified Fano resonance formula applicable to dissipative two-port resonance systems. Based on a generic coupled-resonator model, the formula embodies loss-related correction terms and fundamental resonance parameters that can be determined by an analytic method or experimentally as opposed to finding phenomenological parameters by fitting to numerical results. The theory applies physically meaningful resonance parameters including resonance frequency, total decay rates, and partial radiation probabilities. For example, it shows that the classic Fano shape parameter q is given directly in terms of the phase difference between the resonant and non-resonant transmission pathways. Our new resonance formula quantitatively expresses the resonance spectra pertaining to modal nanophotonic and surface-plasmonic thin-film structures as verified by comparing with exact numerical models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.