Abstract
Abstract In this paper we describe families of commuting invertible formal power series in one indeterminate over ℂ, using the method of formal functional equations. We give a characterization of such families where the set of multipliers (first coefficients) σ of its members F (x) = σx + . . . is infinite, in particular of such families which are maximal with respect to inclusion, so called families of type I. The description of these families is based on Aczél–Jabotinsky differential equations, iteration groups, and on some results on normal forms of invertible series with respect to conjugation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.