Abstract

Event-related potentials (ERPs) were used to determine the effects of level of processing on true and false memory, using the Deese-Roediger-McDermott (DRM) paradigm. In the DRM paradigm, lists of words highly associated to a single nonpresented word (the 'critical lure') are studied and, in a subsequent memory test, critical lures are often falsely remembered. Lists with three critical lures per list were auditorily presented here to participants who studied them with either a shallow (saying whether the word contained the letter 'o') or a deep (creating a mental image of the word) processing task. Visual presentation modality was used on a final recognition test. True recognition of studied words was significantly higher after deep encoding, whereas false recognition of nonpresented critical lures was similar in both experimental groups. At the ERP level, true and false recognition showed similar patterns: no FN400 effect was found, whereas comparable left parietal and late right frontal old/new effects were found for true and false recognition in both experimental conditions. Items studied under shallow encoding conditions elicited more positive ERP than items studied under deep encoding conditions at a 1000-1500 ms interval. These ERP results suggest that true and false recognition share some common underlying processes. Differential effects of level of processing on true and false memory were found only at the behavioral level but not at the ERP level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.