Abstract

Falling or tripping among elderly people living on their own is recognized as a major public health worry that can even lead to death. Fall detection systems that alert caregivers, family members or neighbours can potentially save lives. In the past decade, an extensive amount of research has been carried out to develop fall detection systems based on a range of different detection approaches, i.e, wearable and non-wearable sensing and detection technologies. In this paper, we consider an emerging non-wearable fall detection approach based on WiFi Channel State Information (CSI). Previous CSI based fall detection solutions have considered only time domain approaches. Here, we take an altogether different direction, time-frequency analysis as used in radar fall detection. We use the conventional Short-Time Fourier Transform (STFT) to extract time-frequency features and a sequential forward selection algorithm to single out features that are resilient to environment changes while maintaining a higher fall detection rate. When our system is pre-trained, it has a 93% accuracy and compared to RTFall and CARM, this is a 12% and 15% improvement respectively. When the environment changes, our system still has an average accuracy close to 80% which is more than a 20% to 30% and 5% to 15% improvement respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call