Abstract

Workers at construction sites are prone to fall-from-height (FFH) accidents. The severity of injury can be represented by the acceleration peak value. In the study, a risk prediction against FFH was made using IMU sensor data for accident prevention at construction sites. Fifteen general working movements (NF: non-fall), five low-hazard-fall movements, (LF), and five high-hazard-FFH movements (HF) were performed by twenty male subjects and a dummy. An IMU sensor was attached to the T7 position of the subject to measure the three-axis acceleration and angular velocity. The peak acceleration value, calculated from the IMU data, was 4 g or less in general work movements and 9 g or more in FFHs. Regression analysis was performed by applying various deep learning models, including 1D-CNN, 2D-CNN, LSTM, and Conv-LSTM, to the risk prediction, and then comparing them in terms of their mean absolute error (MAE) and mean squared error (MSE). The FFH risk level was estimated based on the predicted peak acceleration. The Conv-LSTM model trained by MAE showed the smallest error (MAE: 1.36 g), and the classification with the predicted peak acceleration showed the best accuracy (97.6%). This study successfully predicted the FFH risk levels and could be helpful to reduce fatal injuries at construction sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.